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AI_TRACT

Utilization of resources available in situ is a critical enabling

technology for a permanent human presence in space. A permanent
presence on Mars, for example, requires a tremendous infrastructure to

sustain life under hostile conditions (low oxygen partial pressure, ultraviolet

radiation, low temperatures, etc.). As a resource on Mars, atmospheric CO2

is: (1) abundant, (2) available at all points on the surface, (3) of known

presence--requires no precursor mission to verify, (4) chemically simple--
requires no precursor missions to verify composition or properties, (5) can

be obtained by simple compression, with no requirements of mining or

beneficiation equipment operation. This study examines several novel

proposals for CO2 fixation through chemical, photochemical, and

photoelectrochemical means. For example, the reduction of CO2 to

hydrocarbons such as acetylene (C2H2) can be accomplished with hydrogen.

Acetylene has a theoretical vacuum specific impulse of - 375 seconds. We

also examine potential uses of CO, as obtained or further reduced to carbon,

as a reducing agent in metal oxide processing to form metals or metal

carbides for use as structural or power materials; the CO2 can be recycled to

generate 02 and CO.



INTRODUCTION

Utilization of resources available in situ is a critical enabling

technology for a permanent human presence in space. A permanent

presence on Mars, for example, requires a tremendous infrastructure to

sustain life under hostile conditions (low oxygen partial pressure, I ultraviolet

radiation, 2 low temperatures, 3 etc.). Consequently, there have been

numerous studies on the most accessible of Martian resources: atmospheric

carbon dioxide. 4-_ Atmospheric CO2 is: abundant (the atmosphere of Mars

consists of 95% carbon dioxide, I see table 1); available at all points on the

surface; of known presence -- requires no precursor mission to verify;

chemically simple -- requires no precursor missions to verify composition or

properties; and can be obtained by simple compression, with no

requirements of mining or beneficiation equipment operation. This study

examines several novel proposals for CO2 fixation through chemical,

photochemical, and photoelectrochemical means. The organization is as

follows: the introduction highlights proposed systems for carbon dioxide

fixation. A discussion of C02 chemistry is followed by examples of proposed

light-assisted devices. A specific example of chemical fixation, acetylene

(C2H2) production, is discussed in the context of a cursory mission analysis.

Many studies focus on obtaining oxygen and the various uses for

oxygen including life support and fuel; discussion of carbon monoxide, the

co-product from CO2 fixation revolves around its use as a fuel, being oxidized

back to CO2 .8,9 From a feasibility perspective, many studies often focus on

the initial placement of very large 8 and mechanically complex 7 systems on

Mars. It may prove essential in the initial phase of the exploration and

colonization of Mars to employ novel, lightweight photochemically based

systems to produce oxygen and reduced carbon. These mechanically simple

systems could serve as low-capaclty carbon dioxide separation and

conversion devices. It is expected that even after they are supplanted by

more sophisticated systems 7 in the future, photochemicalIy based systems

will be useful backups in case of a malfunction of the "second generation"

systems. We also examine potential uses of CO, as obtained or further

reduced to carbon, as a reducing agent in metal oxide processing to form

metals or metal carbides. The metals and carbides can then be used as

structural or power materials, CO2 can be recycled to generate 02 and CO.
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The reduction of CO2 to hydrocarbons can be accomplished with

hydrogen. This results in producing a large mass of rocket fuel on Mars from

a small amount of hydrogen brought from Earth. For AV return missions

such as manned Mars missions, most of the initial mass required to be

placed in low Earth orbit ("IMLEO") is rocket fuel. Of this, a large fraction

comprises the fuel for the return trip and the fuel in LEO required to boost

the return fuel to Mars. A mission where the return propellant need not be

shipped to Mars, would greatly reduce the required mission mass. Thus,

production of rocket propellant from available resources is an extremely

high-leverage approach to reducing mission mass.

LIGHT-ASSISTED CARBON DIOXIDE FIXATION ON MARS

Background

The goal of this work is to design photochemical and

photoelectrochemical systems for the extraterrestrial manufacturing of

products required to sustain a human presence on Mars from atmospheric

carbon dioxide. The approach involves coupled catalytic cycles to

simultaneously produce oxygen and carbon monoxide. Efficient metal

catalysts and photocatalysts are to be used for both half-reactions: i) the

deoxygenation of C02 to CO; and ii) the evolution of 02. Oxygen can be used

for life support or as an oxidizer in a rocket engine. Carbon monoxide can

be used for rocket fuel, for the production of other propellants, in CO fuel

cells, or for the winning of elemental metals and semimetals from the

respective oxides {SiO2, A1203, Fe203, see table 2) for structural and power

materials. The project is based upon an integrated approach: synthesis of

candidate materials, assessing their reactivity towards CO2, fabrication of

candidate devices and testing these devices in a simulated Martian

environment.

The deoxygenation of CO2 to CO and 02 is thermally demanding:

2 CO2 --> 2 CO + 02 ; AH ° = 566 kJ mo1-1, AG ° = 514 kJ mo1-1 (1)

The deoxygenation of CO2 to CO and O2 can be effected at temperatures in

excess of 1000 K over zirconiafl but only by the significant expenditure of a
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nonrenewable energy source and at low efficiencies. The solar power
density on the surface of Mars is -250 W m -2, approximately one-fourth that

on Earth Io, and more than adequate to power the direct photochemical or

photoelectrochemical deoxygenation of CO2. We propose the development

of energy self-sufficient photochemical systems for the production of oxygen

and carbon monoxide from carbon dioxide on the surface of Mars.

The deoxygenation of C02 to CO and 02 represents the reverse

reaction of the low temperature C0/O2 fuel cell first devised by Kubiak et al.

in 1983:11

CO + 1/2 02 ---> C02; AE = 1.33 V. (2)

Our approach is to drive the endoergic reverse reaction by photochemical

and photoelectrochemical electron/hole separation.

The reduction of C02 to CO has been studied extensively. 12 The

reduction of CO2 can be accomplished by thermal deoxygenation of CO2 and

O-atom transfer to another substrate: 13,14

*C02 ÷ Sub _ Sub=O + *CO; (3)

multiple bond metathesis with another unsaturated species: 15

*CO2 ÷ C=E -_ O=*C=E + CO; (4)

photochemical activation18 ; or electrocatalysis with nickel clusters 17 as

shown in figure 1.

Of the various schemes for C02 reduction to CO examined to date, the

reduction of CO2 by nickel cluster electrocatalysts 17 holds the greatest

promise for a useful device. The proven ability of nickel cluster compounds

to electrocatalyze the reduction of C02 to CO very near the expected

thermodynamic potential will be coupled with photocatalytic and

photoelectrochemical systems for oxygen evolution to accomplish the overall

"splitting" of C02 to CO and 02.

A necessary component of the photochemical system is the "splitting"

of water. The separation of water into H2 and 02 is a problem of both

tremendous fundamental interest and significant technical difficulty.
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Aqueous solutions of ruthenium bipyridine oxo complexes have been found
by Meyer et al. to catalyze the "splitting" of water to oxygen. 18 The

requirement of an aqueous solvent for the ruthenium catalysts, however,

renders them awkward for use on Mars (T -_ -50 ° C). Platinum electrodes

exhibit the lowest known overpotentials for oxygen evolution and are

generally regarded to be the oxygen electrode materials of choice. Recent

molecular photochemical studies on platinum hydroxide and related

alkoxide complexes suggest that the photochemical elimination of 02 can be

achieved via intermediary peroxides. 19 These photochemical reductive

eliminations result in the net two-electron reduction of platinum(II) to

platinum(0). We propose to couple these photoredox systems and others

like them with the known electrocatalytic reduction of CO2 to CO by nickel

clusters. 17 The potentials for platinum(0) reoxidation to platinum(II) match

well with the potentials for the electrocatalytic reduction of CO2 to CO by

nickel clusters. 17

Proposed Devices for Carbon Dioxide Fixation

A proposed Pt(Ni3)2 molecular assembly for the photochemical

splitting of CO2 to CO and 02 is presented in figure 2. In the initial step,

photoexcitation of the Pt(OH)2 chromophore induces the elimination of

oxygen and reduction of Pt(II) to Pt(0). The Pt(0) center is capable of

electron transfer to the pendant Ni3 + clusters. Each reduced Ni3 cluster

thus formed is known to effect the reduction of CO2 to CO. After discharge

of both the 02 and CO. the hydroxylated catalyst can be restored by

combination of OH- with the Pt(II) center. We note the system is catalytic in

H20. No exogenous H20 or aqueous solvent is required; only one mole of

H20 per mole of Pt(Ni3) 2 catalyst is required. Essentially "dry" devices for

operation in a Martian environment can be constructed by immobilization of

the Pt(Ni3)2(H20) in an ionic resin or polymer such as Nai%n®.

Another approach is to prepare solid-state semiconductor

photoelectrochemical devices for the splitting of CO2 to CO and 02. In

particular, p-GaP (Eg - 2.26 eV) has nearly ideal band placement for the

photocathodic reduction of Ni 3 cluster electrocatalysts for CO production 17

coupled with anodic oxygen evolution. Irradiation with light above the

bandgap of p-GaP should result in the photoreduction of Ni3 cluster

electrocatalysts sites on the surface. These electrocatalytic sites are known
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to reduce CO2 to CO. The photogenerated holes (h +) can migrate to the

platinized dark side of the device for the reduction of "O-" ions (which may

take the form of O 2-, OH-, HCO 2-, or CO32- depending on the ionic conductor

employed and conditions). A proposed p-GaP device for the splitting of CO2

is presented in figure 3.

Functioning of such a direct photoelectrochemical reaction on the

surface of Mars requires the presence of U.V. photons of energy greater than

2.26 eV. Although the solar spectrum has not been measured at the surface

of Mars, the Martian atmosphere, with no ozone layer, apparently allows

penetration of solar UV to the surface. The integrated space (AM0) solar

spectrum, i.e., total number of photons with energy greater than the photon

energy listed, is known for the distance of Earth from the sun. 20 On Mars,

the portion of the solar spectrum with h_ > 2.26 eV represents an

electrolysis current equivalent to roughly 3 mA per cm 2 of solar-exposed

surface.

Carbon Monoxide Utilization

Carbon monoxide is a tasteless, odorless, and toxic substance with a

melting point of - 205oC (68K) and a boiling point of - 190°C (83K); 21 it is a

minor component of the Martian atmosphere, see table 1. As discussed

above, carbon monoxide as a resource on Mars, derived from CO2 fixation, is

most often discussed as a fuel. 4,0-9 However, exothermic reaction with 02 to

produce CO2 is only one potential use for CO. Alternatives take advantage of

the reducing chemistry of CO or as a source of carbon. 21-25 Typical examples

are highlighted below in reactions (5) - (9) for the potential production of

materials useful for structures and power systems.

AI203 + 3C -_ 2 Al + 3CO (5)

Fe203 + 3CO _ 2Fe + 3CO2 (6)

SiO2 + 4CO --_ SiC + 3CO2 (7)

CO + SO2 + H20 ---> C + H2SO4 {8)

2Fe304 + CO --_ C + 3Fe203 (9)
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Equation (5) describes a patented process 23 for producing aluminum

using carbon and electricity. For each kg of aluminum produced, 3.45 kg of

carbon and 32.7 MJ of electrical energy are required. The carbon could be

obtained from processes such as (8) or (9) or by electrolysis. Electrical

energy could be obtained from solar cells. Equation (6) describes a low

temperature reduction of iron oxide that produces iron and carbon dioxide.
This system has been studied using mixtures of CO and H2 as a reductant. 24

Equation (7) summarizes a two-step process for reducing SiO2 to SiC at

temperatures of 1100oc under a CO atmosphere. 2s Equations (8) (25°C) and

(9) (200oc) describe relatively low-temperature methods for producing

carbon. The sulfuric acid and iron oxide can then be recycled to produce 02

at elevated temperatures 22 or processed further to produce other materials

(i.e. (6) to produce iron). Recycling the products from (8) and (9) results in

a process for disproportionating CO into carbon and CO2. While the

practicality of this chemistry has yet to be established, it is important to

explore all aspects of CO chemistry to produce as many critical materials

from in-situ resources as possible with a minimum of expended energy.

MARS-DERIVED ROCKET FUEL

Background

Tremendous advantages in chemical propulsion missions can be

achieved by using Martian resources for propulsion. Mars-derived carbon

monoxide can be used directly as a fuel, at a specific impulse of about 300

seconds. For higher specific impulses it is necessary to synthesize

hydrocarbon fuels.

Synthesis of methane/oxygen fuels from indigenous Martian materials

has been discussed by Ash 4 and others. A Mars mission involving processing

of methane fuel is detailed by Zubrin and Baker. 28 Their proposal was for an

unmanned preliminary mission to bring to Mars: (1) the return spacecraft,

(2) a quantity of liquid hydrogen, and (3) an atmospheric processing module,

followed two years later by a manned mission. The processing module

processes the hydrogen along with atmospheric carbon dioxide into methane

and oxygen by the reaction:

4 H 2 + CO 2 --> 2 H20 + CH 4. (I0)
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This is a highly exothermic reaction, the rate of which will be limited

primarily by the ability to remove the heat produced. The evolved water is
recycled to hydrogen and oxygen by electrolysis. Additional oxygen is

produced by reduction of carbon dioxide as discussed in the previous section

and by other authors. 7,28,27

The purpose of this chemistry is to produce a large amount of retum

fuel from a small amount of hydrogen. The required hydrogen is about 5% of
the mass of the fuel produced. Another advantage is the ease of storage.

Hydrogen brought from Earth is converted into methane and water by

reaction (10) within the two days of arrival on Mars, thus eliminating the

significant difficulties of long-term cryogenic storage of hydrogen. The

Baker/Zubrin proposal envisioned completion of propellant manufacture,

resulting in a fully fueled return vehicle on Mars before the manned crew is
launched, and contained several safeguards to ensure that the manned crew

would reach the fueled return vehicle despite any credible worst-case.

Hydrocarbon Rocket Fuels

If carbon dioxide is the only resource assumed to be used from Mars,

then production of hydrocarbon fuels requires hydrogen brought from Earth.

It is desirable, then, to maximize the total impulse of fuel produced and

minimize the amount of hydrogen required. Thus, it is optimal to utilize a

fuel with a minimum hydrogen content. We can define the propellant mass

leverage as the mass of propellant produced divided by the mass of earth

derived components (in this case, hydrogen). The propellant mass leverage

of several fuels (for stoichiometric combustion) is shown in table 3.

It is important to note that the mass leverage is not the only factor to

be considered in a figure of merit; the specific impulse (Isp) is also quite

important, since it determines the amount of fuel required.

Hydrogen/oxygen can produce a specific impulse of up to 500; the

hydrocarbon fuels about 375, the alcohols slightly less, and carbon monoxide

about 300. Carbon monoxide contains no Earth-derived hydrogen, and so has

a hydrogen leverage of infinity, but has low specific impulse.

Since stoichiometric hydrogen/oxygen fuel is nearly 90°/6 oxygen by

mass, a mass leverage of a factor of nine can be achieved simply by using

oxygen derived from carbon dioxide reduction as the oxidizer for Earth-

derived hydrogen. A difficulty of liquid hydrogen as a fuel is that it is
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extremely difficult to store. An additional increase by a factor of two in

propellant leverage is obtained by use of Mars-derived methane, as shown in

(10) above. Use of higher carbon hydrocarbons will gain additional leverage.

Once carbon monoxide is produced on Mars, further synthesis by use

of Fischer-Tropsch type reactions can be used to produce alcohols and

higher hydrocarbons, as shown in table 4. This synthesis route can be used

to produce almost any organic compound of interest, including hydrocarbon

fuels, polymers, and processing feedstock for further use.

The alcohol fuels are a special case. The energy content of alcohols is

lower than that of the corresponding hydrocarbons, and thus they have a

lower specific impulse. The advantage of alcohols is the great ease of storage.

With melting points of-97 ° C and -115 ° C respectively, methanol and ethanol

are liquid over nearly the entire Mars temperature range. Once CO has been

produced by the reactions discussed previously, methanol can be produced

with high selectivity by catalytic hydrogenation: 28

CO + 2H2--_ CH3OH. (11)

This reaction is currently done on a production scale, with a world

production on the order of 15 Mtons/yr. Alternatively, methanol can be

produced directly from carbon dioxide: 28

CO2 + 3H2 --_ CH3OH + H20. (12)

This reaction is less exothermic than the CO reaction, but removal of water

from methanol requires an additional step. Ethanol (and higher alcohols)

can be produced by Fischer-Tropsch chemistry, 28 although with lower

selectivity.

Additional gains in propellant leverage can be obtained by synthesis of

higher hydrocarbons. Ethane and ethylene produce only modest

improvements over methane. Of hydrocarbon fuels, the minimum hydrogen

content fuel is acetylene (C2H 2, H-C-C-H). Despite the higher exhaust

molecular weight, acetylene has a theoretical vacuum specific impulse

slightly better than that of methane. Depending on chamber pressure and

area ratio, the specific impulse can be up to about 425 seconds. This is

because the higher exhaust molecular weight is offset by the energy content
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of the triple bond, resulting in a high combustion temperature. We assume

400 seconds here. Acetylene is a gas at room temperature, but has a boiling

point of ~ -80°C (assuming appropriate pressure to maintain liquid phase),

making it even easier to store than methane, which boris at - -165°C. While

acetylene is thermodynamically unstable, decomposition is not a problem for

liquid acetylene stored at low temperature 29. Acetylene can be produced by

thermal or electric arc pyrolysis of methane at around 1250°C29:

2 CH 4 + 184,000 kJ _ C2H 2 + 3 H2. (13)

A standard production sequence for acetylene is the partial oxidation

of methane, where combustion of the methane with oxygen provides the

energy required for pyrolysis: 3°

6 CH 4 + 02 --_ 2 C2H 2 + 2 CO + 10 H2. (14)

This is an industrial reaction sequence which is well developed. The

hydrogen can be recycled to methane and reused in reaction (10). Use of

acetylene instead of methane decreases the requirement for hydrogen by

another factor of four at no reduction in specific impulse. The high flame

temperature of the oxygen-acetylene flame will require some development of

rocket engine technology. An alternative possibility is to reduce the flame

temperature by adding an additional component into the fuel mixture.

One attractive possibility is using as fuel a mixture of C2H2 and CO.

Since CO is formed as a byproduct of the reactions used to produce

acetylene, no additional chemical technology would be necessary. Burned

wlth oxygen, CO produces a theoretical specific impulse of-300 sec., 27

depending on the assumed combustion.

A mixture of fuels will produce a composite specific impulse equal to

the RMS average of the individual specific impulses, weighted by mass.

Thus, an equal mass mixture of acetylene and CO would produce a theoretical

specific impulse of about 350 sec. This represents some penalty in Isp over

the 400 sec. of acetylene/oxygen alone, but the mixture has only half the

requirement for hydrogen brought from Earth, and a much lower flame

temperature. The leverage of hydrogen is very large: less than 1% of the fuel

mass is Earth-derived hydrogen.
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AV from the surface of Mars to a Mars-Earth transfer orbit is about 5.7

km/sec on the average. At an Isp of 400, a maximum of 23% of the rocket

mass can be injected into the transfer orbit. For the CO/acetylene mixture

Isp of 350, this is reduced to 18%. While a large fraction of this may be tank

weight, it still is likely that the reduction in mass fraction due to lower Isp is

more than compensated for by the decrease in requirement of Earth-derived

hydrogen.

With such high leverage of hydrogen, it becomes possible to consider

use of Mars sources of hydrogen. Water is believed to be present in the form

of permafrost beneath the surface and in the form of water ice in the polar

caps. 31 Use of such a resource, however, would require both precursor

missions to locate the resource, and mining and refining equipment to dig

out and purify the water. The Viking orbiter mapped the water vapor

content of the Martian atmosphere I and as a result we now know the

atmosphere to be nearly saturated with water vapor, about 0.03%

composition by volume, varying with location and season. This results in an

amount of precipitable water between 1 and 100 microns. 31,32 Water can be

precipitated out of the Martian atmosphere by either of two relatively simple

mechanical processes: adiabatic expansion, 33 or isothermal compression.34

Water could be produced from the atmosphere at a rate on the order of one

kilogram per 106 m3 of atmosphere processed. This water could then be

electrolyzed to produce the hydrogen required for fuel production, and

oxygen. The amount of oxygen produced would be sufficient to eliminate the

need for reaction {1} above, assuming a stoichiometric fuel ratio. In this

case, no reactants need be brought from Earth at all for fuel production on

Mars.

Effect on Mission Mass

One figure of merit for savings is initial mass in low Earth orbit,

IMLEO. Clearly, mission mass savings will depend on the details of the

mission architecture, including such details as use of aerobraking and

aerodynamic decelerators, whether a Venus swingby is used, whether a

habitat is placed in high or low Mars orbit, etc.

A rough figure of merit can be calculated from the required orbital AV.

Average AV needed to go from low Earth orbit to trans-Mars injection

(Hohmann transfer} is 4.3 km/sec {the actual value will depend on the
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mission year, since the orbit of Mars is significantly eccentric). The average
return AV from the surface of Mars to trans-Earth injection is 5.68 km/sec.

The mass ratio, or total fueled vehicle mass over final mass, is exponential in

the mission AV:

Mi/M f = exp (AV/gIsp). (15)

Under the most optimistic assumptions, assuming aerobraking at Mars

and Earth arrival at no cost in added mass, an Isp of 450 sec (LH2/LOX), and

no allowances for fuel tank mass and engines, every ton of mass injected

from Mars to Earth requires 2.6 tons of fuel on Mars. Shipping this fuel to

Mars would require an additional 4.3 tons of fuel in LEO. Manufacturing

return fuel on Mars will thus reduce the IMLEO by nearly a factor of seven.

More pessimistic assumptions adding weight for tanks, aerobrake mass, etc,

will increase the advantage of Mars-manufactured propellant even further.

Lower values of Isp, as would be required for space-storable propellants, will

also increase this factor, while habitats or vehicle mass left in Mars orbit or

left behind on the surface will decrease the factor. In any case, however,

manufacturing fuel from in-situ resources on Mars results in huge savings in

n'lass.

CONCLUSIONS

We propose a novel chemical approach to in situ resource utilization

for manned Mars missions. Carbon dioxide fixation can not only be carried

out using purely chemical means but also by taking advantage of another

accessible Martian resource, ultraviolet photons. The proposed light-assisted

carbon dioxide Fixation chemistry has the potential to produce lightweight,

mechanically simple devices for oxygen production. It is anticipated that the

invention of new devices and systems studies will result in an enhanced

understanding of photochemical applications for /n situ resource utilization.

A parallel study of carbon monoxide as a reductant in processing native

oxides on Mars is underway. Novel processes involving carbon monoxide in

metal and semimetal oxide reduction may enhance the value of the products

of carbon dioxide Fixation and conserve hydrogen for other uses.
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Relatively simple and well-understood chemical reactions can be used

to produce hydrocarbon rocket fuels on Mars from hydrogen. Use of such a

process allows an amount of fuel to be produced on Mars which is nearly 100

times the mass of hydrogen brought from Earth. If such a process produces

the return propellant for a manned Mars mission the required mission mass

in LEO is reduced significantly over a system using all Earth-derived

propellants. A further decrease in the requirement for Earth-derived

hydrogen is found if the carbon monoxide produced as a by-product of

acetylene production is also used as a fuel component. Propellant brought

from Earth could be entirely eliminated if a convenient source of hydrogen

on Mars such as atmospheric water could be used. Even the simplest

processing sequence, manufacturing oxygen, would reduce fuel requirements

on Mars by a factor of four if CH 4 propellant is brought entirely from Earth.

If only one single idea is to be emphasized, it is that the carbon

dioxide atmosphere of Mars is a significant, abundant resource for

manufacturing critical materials on Mars. There are many possible chemical

sequences to utilize the CO 2 and reduced by-products CO and carbon. The

processes discussed for making hydrocarbons and alcohols from CO2 and

reducing metal oxides with CO and carbon are thermodynamically feasible

but may not be practical. There are likely to be other sequences that are

more useful. At this stage in the definition of manned Mars missions, it is

important to explore the full range of the known chemistries of simple

carbon compounds. A more thorough exploitation of easy-to-obtain resources

will enhance the potential for in situ resource utilization. Further progress

in simplifying in situ manufacturing technology will provide for lighter, less-

expensive missions and increase the likelihood of manned planetary

exploration in our lifetime.
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TABLE I.

COMPOSITION OF MARTIAN LOWER ATMOSPHERE*

GAS PERCENT VOLUME

Carbon Dioxide (CO2) 95.32

Nitrogen (N2) 2.7

Argon (Ar) 1.6

Oxygen (02) 0.13

Carbon Monoxide (CO) 0.07

Water Vapor (H2 O) 0.03

* - Source: NASA Technical Memorandum 82478.
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TABLE 2.

APPROXIMATE ELEMENTAL COMPOSITION

AND CHEMISTRY OF VIKING 1 LANDER SITE*

ELEMENTS PERCENT COMPOUND

Oxides of 40 SiO2

H, C, N, Na

Si 21 Fe203

Fe 13 MgO

Unknown 9 SO3

Mg 5 A1203

Ca 4 CaO

S 3 TiO2

Ti 1 K20

Sr, Y, K, 1

Zr, Rb (total)

PERCENT

4O

18

8

8

6

6

1

0.3

* - Source: NASA Technical Memorandum 82478.

TABLE 3.

IN-SITU PROPELLANT MASS LEVERAGE*

FI_EL I_EACTION STOICHIOMETRY LEVERAGE

Hydrogen (Baseline) H2 +

Hydrogen H2 +

Methane CH4 +

Ethane C2H6 +

Ethylene C2H4 +

Acetylene C2H2 +

Methanol CH3OH +

Ethanol C2HsOH +

Carbon monoxide 00 +

1/2 02

1/2 02

2 02

7/2 02

302

5/2 02

3/2 02

302

1/2 02

{Earth}

(Mars}

1

9

20

24

31

53

20

24

* - See discussion in text.
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TABLE 4.

THERMODYNAMIC VALUES FOR CO/H2 REACTIONS*

PRQDU_T REACTION AH [kJ mol-Xi

Methane CO + 3 H2 --_ CH4 + H20 -206

2 CO + 2 H2 ---> CH4 + CO2 -248

Alkanes CO + 2H2 _ (-CH2-) + H20

2 CO + H2 --_ (-CH2-) + CO2

3 CO + 2 H20 --_ (-CH2-) + 2 CO2

-165

-207

-249

Methanol CO + 2 H2 ---> CH3OH - 90.8

Alcohols n CO + 2n H2 ---> CnH2n+1OH + (n-l) H20 -124.8

* - Adapted from text reference [28].

2e" (E" = - 1.07 V vs SCE)

2 Ni3 + 2 Ni 3

CO + O 2- CO2

Figure 1. E1ectrocatalytic splitting of carbon dioxide

using nickel cluster catalyst. See text for discussion.
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Photoexcitation of Hydroxylated Catalyst

Me Me• _+
l_ 7+ N

_Ni.p pin _--l-_Ni. p

\V
P_ P

pt /
OH" "OH

hv

Photoelimination of 0 2

Me
Me "7 + _ 7 +
C C

p.N,-- -- ".p _|._ "P

I p'] L" P

1/2 02 + H20

Reduction of CO 2 to CO, Regeneration of Hydroxylated Catalyst

Me Me
N f_
C C

p.N, ___l__._Ni.P ,p.N,_--|--)Ni. p

I ip
P_ Pt 7 2+

CO 2 + H20 CO

_ Hydroxylated

Catalyst

hv

Net Reaction: CO 2 -- CO + 1/2 0 2
Pt(Ni3) 2 catalyst

Figure 2. A photochemical system for splitting carbon dioxide. Note that the

reaction is also catalytic in H20. The reaction produces as much water as is

consumed. Added or exogenous water is not required.
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p-GaP

iihvl \V/ _.
:"" "0-" I _ CO+ "0"" '""

_ g

g g

_H||||_H|_|_|H|||||||||H_|M_H|_H|_|_||||_H||||H_|||||||_||H||_|_||_|H|||_H||HH_|_|||_M_H||||H||!

Ionic Conductor

hv

Net Reaction: CO2 _ CO + 1/2 0 2
p-OaP/Ni3/Pt

Figure 3. A semiconductor photoelectrochemlcal system for splitting carbon dioxide.
See text for discussion regarding energy requirement of absorbed photon.
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